Tungsten

General Information

Discovery

Tungsten was discovered by J.J. and F. Elhuijar in 1783 in Vergara, Spain. However, in 1779 Woulfe examined the mineral wolframite and concluded it must contain a new element. An alternative name for tungsten is wolfram, from this discovery.

Appearance

Tungsten metal is silvery-white and lustrous, but the element is usually obtained as a grey powder.

Source

The principal tungsten containing ores are scheelite and wolframite. Commercially, the metal is obtained by reducing tungsten oxide with hydrogen or carbon.

Uses

Tungsten and its alloys are used extensively for filaments for electric lamps, electron tubes and television tubes. As it has the highest melting point of all metals it is used in numerous high-temperature applications. High-speed tool steels contain tungsten, as does a new "painless" dental drill which spins at ultra-high speeds.

Tungsten carbide is of great importance to the metal-working, mining and petroleum industries.

Calcium and magnesium tungstates are widely used in fluorescent lighting.

Biological Role

Tungsten has no known biological role, and has low toxicity.

General Information

Tungsten has the highest melting point and lowest vapour pressure of all metals, and at temperatures over 1650K has the highest tensile strength. The metal resists attack by oxygen, acids and alkalis.

Physical Information

Atomic Number 74

Relative Atomic Mass (¹²C=12.000) 183.85

Melting Point/K 3680

Boiling Point/K 5930

Density/kg m⁻³ 19300 (293K)

Ground State Electron Configuration [Xe]4f¹⁴5d⁴6s²

Electron Affinity (M-M⁻)/kJ mol⁻¹ 119

Key Isotopes

Nuclide	^{180}W	¹⁸² W	^{183}W	¹⁸⁴ W	¹⁸⁵ W	¹⁸⁶ W
Atomic mass	179.9	181.9	182.9	183.9		185.9
Natural abundance	0.10%	26.3%	14.3%	30.7%	0%	28.6%
Half-life	stable	stable	stable	stable	75 days	stable

Nuclide ¹⁸⁷W

Atomic mass

Natural abundance 0%

Half-life 23.9 h

Ionisation Energies/kJ mol ⁻¹

		•
М	- M ⁺	770
M ⁺	- M ²⁺	1700
M ²⁺	- M ³⁺	2300
M ³⁺	- M ⁴⁺	3400
M ⁴⁺	- M ⁵⁺	4600
M ⁵⁺	- M ⁶⁺	5900

Other Information

Enthalpy of Fusion/kJ mol⁻¹ 35.2

Enthalpy of Vaporisation/kJ mol⁻¹ 824.2

Oxidation States

 $W^{-IV},\,W^{-II},\,W^{-I},\,W^{O},\,W^{II},\,W^{III},\,W^{IV},\,W^{V},\,W^{VI}$

Covalent Bonds/kJ mol⁻¹

Not applicable