Hassium

General Information

Discovery

Hassium was first made in 1984 by Peter Armbruster, Gottfried Munzenberg and co-workers at the GSI in Darmstadt, Germany.

Appearance

Unknown, but probably metallic grey in appearance.

Source

A transuranium element, only a few atoms of hassium have ever been made, and it will probably never be isolated in observable quantities. Created by a so-called "cold fusion" method, in which a target of lead is bombarded with atoms of iron.

Uses

Unknown

Biological Role

None

General Information

A synthetic element created via nuclear bombardment, few atoms have ever been made and the properties of hassium are very poorly understood. It is a radioactive metal which does not occur naturally and is of research interest only. The first atoms were made via a nuclear reaction, the cold fusion method:

 $^{208}\text{Pb} + ^{58}\text{Fe} \rightarrow ^{265}\text{Hs} + \text{n}$

Physical Information

Atomic Number 108

Relative Atomic Mass (¹²C=12.000) 265

Melting Point/K Not available

Boiling Point/K Not available

Density/kg m⁻³ 41,000 (estimated)

Ground State Electron Configuration [Rn]5f¹⁴6d⁶7s²

Electron Affinity (M-M⁻)/kJ mol⁻¹ Not available

Key Isotopes

Nuclide ²⁶⁴Hs ²⁶⁵Hs

Atomic mass 264.13 265.13

Natural abundance 0% 0%

Half-life approx approx

8x10⁻⁵secs 2x10⁻³secs

Ionisation Energies/kJ mol -1

M - M⁺ 750 (est)

 $M^{+} - M^{2+}$

 $M^{2+} - M^{3+}$

 $M^{3+} - M^{4+}$

M⁴⁺ - M⁵⁺

101 101

M° - M°

 $M^{6+} - M^{7+}$

 M^{7+} - M^{8+}

 M^{8+} - M^{9+}

 $M^{9+} - M^{10+}$

Other Information

Enthalpy of Fusion/kJ mol⁻¹ Not available

Enthalpy of Vaporisation/kJ mol⁻¹ Not available

Oxidation States

Many oxidation states predicted, but Hs^{III} has been predicted as probably the most stable state.

Covalent Bonds/kJ mol⁻¹

Not available