Gadolinium

General Information

Discovery

Gadolinium was discovered by J.C. Galissard de Marignac in 1880 in Geneva, Switzerland. Lecoq de Boisbaudran isolated the element in 1886.

Appearance

Gadolinium is a silvery-white metal with a lustrous sheen.

Source

In common with other rare earth elements, gadolinium is found principally in the minerals monazite and basnaesite, from which it can be commercially prepared by ion exchange and solvent extraction. It is also prepared by reduction of the anhydrous fluoride with calcium metal.

Uses

Gadolinium has useful properties in alloys. As little as 1% gadolinium has been found to improve the workability and resistance of iron and chromium alloys to high temperatures and oxidation. It has found limited use in electronics, but is not a widely used metal.

Biological Role

Gadolinium has no known biological role, and has low toxicity.

General Information

Gadolinium reacts slowly with oxygen and water, and dissolves in acids. It is relatively stable in dry air but tarnishes in moist air.

Physical Information

Atomic Number 64

Relative Atomic Mass (¹²C=12.000) 157.25

Melting Point/K 1586

Boiling Point/K 3539

Density/kg m⁻³ 7900 (298K)

Ground State Electron Configuration [Xe]4f⁷5d¹6s²

Electron Affinity (M-M⁻)/kJ mol⁻¹ 50

Key Isotopes

Nuclide	¹⁵² Gd	¹⁵³ Gd	¹⁵⁴ Gd	¹⁵⁵ Gd	¹⁵⁶ Gd	¹⁵⁷ Gd
Atomic mass	151.9		153.9	154.9	155.9	156.9
Natural abundance	0.2%	0%	2.1%	14.8%	20.6%	15.6%
Half-life	1.1x10 ¹⁴ yrs	242 days	stable	stable	stable	stable
Nuclide	¹⁵⁸ Gd	¹⁶⁰ Gd				
Natural abundance Half-life	0.2% 1.1x10 ¹⁴ yrs	242 days	2.1%	14.8%	20.6%	15.6%

Nuclide 156d 166d

Atomic mass 157.9 159.9

Natural abundance 24.8% 21.9%

Half-life stable stable

Ionisation Energies/kJ mol ⁻¹

		_
М	- M ⁺	592.5
M^{+}	- M ²⁺	1167
M^{2+}	- M ³⁺	1990
M ³⁺	- M ⁴⁺	4250
M^{4+}	- M ⁵⁺	
M ⁵⁺	- M ⁶⁺	
M^{6+}	- M ⁷⁺	
M^{7+}	- M ⁸⁺	
M ⁸⁺	- M ⁹⁺	
M ⁹⁺	- M ¹⁰⁺	

Other Information

Enthalpy of Fusion/kJ mol⁻¹ 15.5

Enthalpy of Vaporisation/kJ mol⁻¹ 301

Oxidation States

 Gd^{II} , Gd^{III}

Covalent Bonds/kJ mol⁻¹

Not applicable