Dysprosium

General Information

Discovery

Dysprosium was discovered by P.E. Lecoq de Boisbaudran in 1886 in Paris, France.

Appearance

Dysprosium is a bright, hard metal with a silvery lustre.

Source

In common with many other rare earth elements, dysprosium is found in the minerals monazite and bastnaesite, and in smaller quantities in several other minerals such as xenotime and fergusonite. It can be extracted from these minerals by ion exchange and solvent extraction. It can also be prepared by the reduction of the trifluoride with calcium metal.

Uses

Dysprosium has not yet found many applications. However, it has a high thermal neutron absorption cross-section and a high melting point, and so it may be useful in nuclear control alloys. A dysprosium oxide-nickel cement is used in cooling nuclear reactor control rods, and has the property of absorbing neutrons readily without swelling or contracting under prolonged neutron bombardment.

Biological Role

Dysprosium has no known biological role, and has low toxicity.

General Information

Dysprosium is relatively stable in air at room temperature, and is readily attacked and dissolved by acids. It is soft enough to be cut with a knife.

Physical Information

Atomic Number	66
Relative Atomic Mass (¹² C=12.000)	162.50
Melting Point/K	1685
Boiling Point/K	2835
Density/kg m ⁻³	8550 (293K)
Ground State Electron Configuration	[Xe]4f ¹⁰ 6s ²
Electron Affinity (M-M ⁻)/kJ mol ⁻¹	Not available

Key Isotopes						
Nuclide	¹⁵⁶ Dy	¹⁵⁸ Dy	¹⁶⁰ Dy	¹⁶¹ Dy	¹⁶² Dy	¹⁶³ Dy
Atomic mass	155.9	157.9	159.9	160.9	161.9	162.9
Natural abundance	0.06%	0.10%	2.34%	18.9%	25.5%	24.9%
Half-life	stable	stable	stable	stable	stable	stable
Nuclide	¹⁶⁴ Dy					
Atomic mass	163.9					
Natural abundance	28.2%					
Half-life	stable					

Ionisation Energies/kJ mol ⁻¹				
М	- M ⁺	571.9		
M+	- M ²⁺	1126		
M ²⁺	- M ³⁺	2200		
M ³⁺	- M ⁴⁺	4001		
M ⁴⁺	- M ⁵⁺			
M ⁵⁺	- M ⁶⁺			
M ⁶⁺	- M ⁷⁺			
M ⁷⁺	- M ⁸⁺			
M ⁸⁺	- M ⁹⁺			
M ⁹⁺	- M ¹⁰⁺			

Г

Other Information				
Enthalpy of Fusion/kJ mol ⁻¹	17.2			
Enthalpy of Vaporisation/kJ mol ⁻¹	293			
Oxidation States				
Main	Dy ^{III}			
Others	Dy ^{II} , Dy ^{IV}			
Covalent Bonds/kJ mol ⁻¹				
Not applicable				